On Recurrences for Ising Integrals

نویسنده

  • Flavia Stan
چکیده

We use WZ-summation methods to compute recurrences for the Ising-class integrals Cn,k. In this context, we describe an algorithmic approach to obtain homogeneous and inhomogeneous recurrences for a general class of multiple contour integrals of Barnes’ type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Singularities in the Susceptibility Expansion for the Two-Dimensional Ising Model

For temperatures below the critical temperature, the magnetic susceptibility for the two-dimensional isotropic Ising model can be expressed in terms of an infinite series of multiple integrals. With respect to a parameter related to temperature and the interaction constant, the integrals may be extended to functions analytic outside the unit circle. In a groundbreaking paper, B. G. Nickel [10] ...

متن کامل

Hypergeometric Forms for Ising-Class Integrals

We apply experimental-mathematical principles to analyze integrals

متن کامل

Integrals of the Ising class

From an experimental-mathematical perspective we analyze " Ising-class " integrals. These are structurally related n-dimensional integrals we call C n , D n , E n , where D n is a magnetic susceptibility integral central to the Ising theory of solid-state physics. We first analyze C n := 4 n! ∞ 0 · · · ∞ 0 1 n j=1 (u j + 1/u j) 2 du 1 u 1 · · · du n u n. We had conjectured—on the basis of extre...

متن کامل

XX and Ising limits in integral formulae for finite temperature correlation functions of the XXZ chain

We consider a multiple integral representation for a one-parameter generating function of the finite temperature Sz-Sz correlation functions of the antiferromagnetic spin-1/2 XXZ chain in the XX limit and in the Ising limit. We show how in these limits the multiple integrals reduce to single integrals, thereby reproducing known results. PACS: 05.30.-d, 75.10.Pq †e-mail: [email protected]...

متن کامل

Non-Existence of Local Integrals of Motion in the Multi-Deformed Ising Model

We confirm the non-integrability of the multi-deformed Ising Model, an already expected result. After deforming with the energy operator φ1,3 we use the Majorana free fermionic representation for the massive theory to show that, besides the trivial one, no local integrals of motion can be built in the theory arising from perturbing with both energy and spin operators. 1 e-mail: pfonseca@physics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007